Extensions 1→N→G→Q→1 with N=C3×C322Q8 and Q=C2

Direct product G=N×Q with N=C3×C322Q8 and Q=C2
dρLabelID
C6×C322Q848C6xC3^2:2Q8432,657

Semidirect products G=N:Q with N=C3×C322Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C322Q8)⋊1C2 = C336SD16φ: C2/C1C2 ⊆ Out C3×C322Q8244(C3xC3^2:2Q8):1C2432,583
(C3×C322Q8)⋊2C2 = S3×C322Q8φ: C2/C1C2 ⊆ Out C3×C322Q8488-(C3xC3^2:2Q8):2C2432,603
(C3×C322Q8)⋊3C2 = C335(C2×Q8)φ: C2/C1C2 ⊆ Out C3×C322Q8488-(C3xC3^2:2Q8):3C2432,604
(C3×C322Q8)⋊4C2 = C336(C2×Q8)φ: C2/C1C2 ⊆ Out C3×C322Q8248+(C3xC3^2:2Q8):4C2432,605
(C3×C322Q8)⋊5C2 = D6.3S32φ: C2/C1C2 ⊆ Out C3×C322Q8248+(C3xC3^2:2Q8):5C2432,609
(C3×C322Q8)⋊6C2 = D6.6S32φ: C2/C1C2 ⊆ Out C3×C322Q8488-(C3xC3^2:2Q8):6C2432,611
(C3×C322Q8)⋊7C2 = Dic3.S32φ: C2/C1C2 ⊆ Out C3×C322Q8248+(C3xC3^2:2Q8):7C2432,612
(C3×C322Q8)⋊8C2 = C3×S3×Dic6φ: C2/C1C2 ⊆ Out C3×C322Q8484(C3xC3^2:2Q8):8C2432,642
(C3×C322Q8)⋊9C2 = C3×Dic3.D6φ: C2/C1C2 ⊆ Out C3×C322Q8484(C3xC3^2:2Q8):9C2432,645
(C3×C322Q8)⋊10C2 = C3×D6.3D6φ: C2/C1C2 ⊆ Out C3×C322Q8244(C3xC3^2:2Q8):10C2432,652
(C3×C322Q8)⋊11C2 = C3×D6.4D6φ: C2/C1C2 ⊆ Out C3×C322Q8244(C3xC3^2:2Q8):11C2432,653
(C3×C322Q8)⋊12C2 = C3×C322SD16φ: C2/C1C2 ⊆ Out C3×C322Q8244(C3xC3^2:2Q8):12C2432,577
(C3×C322Q8)⋊13C2 = C3×D6.D6φ: trivial image484(C3xC3^2:2Q8):13C2432,646

Non-split extensions G=N.Q with N=C3×C322Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C322Q8).1C2 = C33⋊Q16φ: C2/C1C2 ⊆ Out C3×C322Q8484(C3xC3^2:2Q8).1C2432,585
(C3×C322Q8).2C2 = C3×C32⋊Q16φ: C2/C1C2 ⊆ Out C3×C322Q8484(C3xC3^2:2Q8).2C2432,578

׿
×
𝔽